

Space and Technology Division

Modular Advanced Signal Channelizer (MASC) Program Kickoff Meeting

August 16, 2000

Richard Davis
TRW

David Honey DARPA

Contract No. MDA972-00-C-0016

Wideband Requirements of Future Military Systems Motivates the Development of Optically-Based Processing of Analog Signals

 Developments in reconfigurable antennas, wideband modulators, and photodetectors, combined with the intrinsic bandwidth of fiber make processor electronics the bandwidth bottleneck

MISSION: EW/ELECTRONIC SUPPORT MEASURES

The Modular Advanced Signal Channelizer (MASC) Program will Exploit Emerging Photonics Technologies to Build a Coherent Optical RF Receiver

MASC is a Three Part Program to Develop a Modular, Integrated-Optic-Based RF Lightwave Circuit (RFLIC) for Performing Coherent Channelization of Extremely Wideband RF Signals

MASC program summary

MASC Program Organization

Principle of Operation of a Coherent Optical Channelizer

The signal is impressed on an optical carrier

The local oscillators are injected at offset angle $\delta\theta$ to set the l.F.

The detector signal is the heterodyne beat of λ_{signal} and $\lambda_{\text{L.O.}}$

INTEGRATED OPTICAL CHANNELIZER-ON-A-CHIP

Integrated Sensor System is the Mission Insertion Application for the Photonic Channelizer

Coherent Optical Channelizer Based on Optical Dispersion is a Proven Technology

TRW/DARPA "CORE" Channelizer:
Monitor Displays Optical Spectrum of DSBSC
Signal Beam Modulated with CW Tones at
1GHz, 4GHz, and 5GHZ

Channel Passband Response

Channelizer Dynamic Range

Measured SFDR into 3kHz noise BW	SFDR BW ^{2/3} product	Calculated SFDR BW ^{2/3} product
82dB	105.2 dB Hz ^{2/3}	108.0 dB Hz ^{2/3}

Sol-Gel Glass is a Versatile Material Base for Constructing MASC's Waveguide Structures

Channel Waveguide

Sol-gel Bragg Grating for DBR Laser

Planarized Waveguide

Lasing Spectrum for DBR Laser

MLL Design Optimizes Frequency Domain Performance

Conceptual Block Diagram of the Mode-Locked Laser

- Envelope of Mode Spectrum Can be Controlled Readily Via Shaping of Grating Reflectivity
- Center Wavelength is Tunable by Temperature Tuning Semiconductor Chip or Fiber Bragg Grating
- Mode Spacing is Monitored and Actively Controlled to Optimize Phase Noise Performance
- Optical Injection Locking will be Used to Establish Phase Coherence with the Signal Carrier